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Abstract
Using the ∂-problem and dual ∂-problem, we derive bilinear relations which
allow us to construct integrable hierarchies in different parametrizations, their
Darboux–Bäcklund transformations and to analyse constraints for them in a
very simple way. Scalar KP, BKP and CKP hierarchies are considered as
examples.

PACS number: 0230R

There are different methods of constructing integrable equations and analysing their properties
(see, e.g., [1–4]). The ∂-dressing method proposed in [5] is, perhaps, one of the most effective
of them. Recently, it has been applied successfully to several important problems in soliton
theory (see, e.g., [6–11]).

In this paper we would like to draw the reader’s attention to one more profitable aspect of
the ∂-dressing method. Namely, starting with the ∂-problem and the dual ∂-problem, we derive
two important bilinear relations for the so-called Cauchy–Baker–Akhiezer (CBA) functions
associated with different kernels R of the ∂-problem. These relations provide us with simple
variational relations for CBA functions and the ∂-kernel R. In a simple unified manner, they
generate integrable hierarchies in different parametrizations and corresponding bilinear Hirota
identities. These bilinear relations are also convenient for the analysis of different constraints.
It is shown how scalar BKP and CKP hierarchies arise within such an approach. We also
demonstrate that a pole-type parametrization of evolutions leads to the continuous analogues
of the Darboux system.

The ∂-dressing method is based on the non-local ∂-problem for a function with some
normalization (see, e.g., [5–7]). We start with the following pair of ∂-problems dual to each
other:

∂χ ′(λ, µ)

∂λ
= π δ(λ − µ) +

∫ ∫
C

dν ∧ dν χ ′(ν, µ) R′(ν, λ) (1)

and
∂χ∗(λ, ρ)

∂λ
= −π δ(λ − ρ) −

∫ ∫
C

dν ∧ dν R(λ, ν) χ∗(ν, ρ) (2)
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where λ ∈ C, a bar denotes complex conjugation and δ(λ) is the Dirac delta-function. The
functions χ , χ∗, R and R∗ depend both on λ and λ, µ and µ, etc. To simplify the notation we
will omit the dependence on λ, µ, ρ, ν, etc. At λ → µ we have

χ ′(λ, µ) = 1

λ − µ
+ χ ′

r (λ, µ) χ∗(λ, µ) = − 1

λ − µ
+ χ∗

r (λ, µ)

where χ ′
r and χ∗

r are regular functions. Solutions of the ∂-problem with such properties have
been introduced in different contexts in [6, 12]. We shall refer to χ(λ, µ) as the CBA functions.
Furthermore, we assume that R′(ν, λ) = R(ν, λ) = 0 for ν ∈ G, λ ∈ G where G is a certain
domain in C and µ, ρ ∈ G. So the functions χr(λ, µ) and χ∗

r (λ, µ) are analytic in G with
respect to both variables. Typically, G = D0 or G = D0 ∪ D∞ where D0 and D∞ are the unit
discs around the origin λ = 0 and around the infinity λ = ∞, respectively. In general, χ and
R in (1) and (2) are matrix-valued functions.

To derive desired bilinear relations we first multiply from the right both sides of equation (1)
by f1(λ) χ∗(λ, ρ) and then multiply both sides of equation (2) by χ ′(λ, µ) f2(λ) from the
left where f1(λ) and f2(λ) are arbitrary matrix-valued functions. Summing up the obtained
equations, one obtains

∂χ ′(λ, µ)

∂λ
f1(λ) χ∗(λ, ρ) + χ ′(λ, µ) f2(λ)

∂χ∗(λ, ρ)

∂λ

= π δ(λ − µ) f1(λ) χ∗(λ, ρ) − π δ(λ − ρ) χ ′(λ, µ) f2(λ)

+
∫ ∫

C

dν ∧ dν
[
χ ′(ν, µ) R′(ν, λ) f1(λ) χ∗(λ, ρ)

−χ ′(λ, µ) f2(λ) R(λ, ν) χ∗(ν, ρ)
]
. (3)

Integrating (3) with respect to λ over C, one obtains∫ ∫
C

dλ ∧ dλ

[
∂χ ′(λ, µ)

∂λ
f1(λ) χ∗(λ, ρ) + χ ′(λ, µ) f2(λ)

∂χ∗(λ, ρ)

∂λ

]

= 2π i [χ ′(ρ, µ) f2(ρ) − f1(µ) χ∗(µ, ρ)]

+
∫ ∫

C

dλ ∧ dλ

∫ ∫
C

dν ∧ dν χ ′(ν, µ)

× [
R′(ν, λ) f1(λ) − f2(ν) R(ν, λ)

]
χ∗(λ, ρ). (4)

Then integration of (3) over C/G gives∫ ∫
C/G

dλ ∧ dλ

[
∂χ ′(λ, µ)

∂λ
f1(λ) χ∗(λ, ρ) + χ ′(λ, µ) f2(λ)

∂χ∗(λ, ρ)

∂λ

]

=
∫ ∫

C/G

dλ ∧ dλ

∫ ∫
C/G

dν ∧ dν χ ′(λ, µ)

× [
R′(ν, λ) f1(λ) − f2(ν) R(ν, λ)

]
χ∗(λ, ρ). (5)

Considering equation (5) with R′ = R (hence, χ ′ = χ ) and f1 = f2 = 1, one readily
obtains the well known result χ∗(µ, ρ) = χ(ρ, µ) [8, 9].

The bilinear identities (4) and (5) (with χ∗(λ, ρ) = χ(ρ, λ)) are the fundamental bilinear
relations within the ∂-dressing method. We shall show that these relations provide us with
integrable hierarchies and the basic formulae associated with them in a simple and transparent
way.

In what follows we will consider the particular case of f1(λ) = f2(λ) = f (λ) and
∂f (λ)

∂λ
= 0 at λ ∈ C/G and assume that f (λ) and χ(λ, µ) have no discontinuities on ∂G.
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Thus, our starting bilinear relations are

2π i [f (µ) χ(ρ, µ) − χ ′(ρ, µ) f (ρ)] = −
∫ ∫

C

dλ ∧ dλ χ ′(λ, µ)
∂f (λ)

∂λ
χ(ρ, λ)

−
∫ ∫

C

dλ ∧ dλ

∫ ∫
C

dν ∧ dν χ ′(ν, µ)
[
R′(ν, λ) f (λ) − f (ν) R(ν, λ)

]
χ(ρ, λ)

(6)∫
∂G

dλ χ ′(λ, µ) f (λ) χ(ρ, λ) =
∫ ∫

C/G

dλ ∧ dλ

∫ ∫
C/G

dν ∧ dν χ ′(ν, µ)

× [
R′(ν, λ) f (λ) − f (ν) R(ν, λ)

]
χ(ρ, λ). (7)

At f = 1 relation (7) gives

χ ′(ρ, µ) − χ(ρ, µ) = − 1

2π i

∫ ∫
C/G

dλ ∧ dλ

∫ ∫
C/G

dν ∧ dν χ ′(ν, µ)

× [
R′(ν, λ) − R(ν, λ)

]
χ(ρ, λ). (8)

Thus, in particular,

δχ(ρ, µ)

δR(ν, λ)
= − 1

2π i
χ(ρ, λ) χ(ν, µ) ρ, µ ∈ G ν, λ ∈ C/G. (9)

Then in the case of general degenerate variation of R formula (8) provides us with an explicit
transformation of χ . Indeed, let

R′(ν, λ) = R(ν, λ) − 2π i
n∑

k=1

Ak(ν) Bk(λ) (10)

where Ak and Bk are arbitrary functions. Substituting (9) into (8), one obtains

χ ′(ρ, µ) − χ(ρ, µ) =
n∑

k=1

X∗ ′
k (µ) Xk(ρ) (11)

where

X∗ ′
k (µ) =

∫ ∫
C/G

dν ∧ dν χ ′(ν, µ) Ak(ν)

Xk(ρ) =
∫ ∫

C/G

dλ ∧ dλ Bk(λ) χ(ρ, λ).

(12)

It follows from (11) that

X∗ ′
i (µ) − Xi(µ) =

n∑
k=1

X∗ ′
k (µ) Ck i (13)

where

Ck i =
∫ ∫

C/G

dλ ∧ dλ

∫ ∫
C/G

dν ∧ dν Bk(ν) χ(λ, ν) Ai(λ). (14)

Using (13) and (11), one obtains

χ ′(ρ, µ) = χ(ρ, µ) +
n∑

i,k=1

Xi(µ)
[
(1 − C)−1

]
i k

Xk(ρ) (15)
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where Xi(λ) are given by (12). This formula describes dressing of the CBA function χ(λ, µ)

under a generic degenerate transformation (10) of the ∂-kernel on an arbitrary background
R(ν, λ). In the particular case of a degenerate background kernel R(ν, λ) and within a different
approach, similar formula have been derived recently in [13].

Now let us consider continuous transformations. The simplest of them are given by a
similarity transformation of the kernel R

R′(ν, λ) = G(ν) R(ν, λ) G−1(λ) (16)

where G(λ) is a matrix-valued function. We assume that G(λ) is analytic in C/G and
continuous on ∂G. Considering formulae (6) and (7) with f (λ) = G(λ), we conclude that
under the transformations (16), the following bilinear relations hold:

χ ′(ρ, µ) G(ρ) − G(µ) χ(ρ, µ) = − 1

2π i

∫ ∫
G

dλ ∧ dλ χ ′(λ, µ)
∂G(λ)

∂λ
χ(ρ, λ) (17)

and ∫
∂G

dλ χ ′(λ, µ) G(λ) χ(ρ, λ) = 0. (18)

It is easy to check that these two relations are equivalent to each other.
Representing G(λ) as G(λ) = g′(λ) g−1(λ) and denoting χ(λ, µ) ≡ χ(λ, µ; g),

χ ′(λ, µ) ≡ χ(λ, µ; g′), one rewrites (18) in the form∫
∂G

dλ χ ′(λ, µ; g′) g′(λ) g−1(λ) χ(ρ, λ; g) = 0 (19)

that is the generalized Hirota bilinear identity introduced and discussed in [14, 15]. In the
particular case µ = ρ = 0 it represents the celebrated Hirota bilinear identity (see, e.g., [3]).
It was shown in [15] that the identity (19) provides an effective tool to describe and analyse
the so-called generalized integrable hierarchies and hierarchies of corresponding singularity
manifold equations.

Formulae (17) and (18) define finite continuous transformations. For infinitesimal
transformations G(λ) = 1 + ε ω(λ), δR(λ, µ) = ε

∂R(λ,µ)

∂τ
and δχ(λ, µ) = ε

∂χ(λ,µ)

∂τ
where

ε → 0 and τ is the transformation parameter . The infinitesimal version of the formulae
(16)–(18) looks like

∂

∂τ
R(ν, λ) = ω(ν) R(ν, λ) − R(ν, λ) ω(λ) (20)

∂

∂τ
χ(ρ, µ) = ω(µ) χ(ρ, µ) − χ(ρ, µ) ω(ρ) − 1

2π i

∫ ∫
G

dλ ∧ dλ χ(λ, µ)
∂ω(λ)

∂λ
χ(ρ, λ)

(21)
∂

∂τ
χ(ρ, µ) = 1

2π i

∫
∂G

dλ χ(λ, µ) ω(λ) χ(ρ, λ). (22)

Formula (21) and (22) are equivalent to each other, but in some cases one of them is more
convenient than the other. Formula (22) with ε ω(λ) = δg(λ) g−1(λ) can also be found in
[15], while a version of formula (21) with integration over C has been derived in [9] (see also
[7]). A formula similar to (22) has been derived in [12] by a different method.

Equations (21) and (22) define integrable deformations of the CBA function since the
∂-problems (1) and (2) allow us to construct wide classes of exact solutions for them. The
concrete form of these integrable evolutions is defined by a form of the function ω(λ). In the rest
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of the paper we will consider only scalar equations. With the simplest choice ω(λ) = 1
2π i

1
λ−a

where a ∈ G is a parameter, one obtains (τ = a) for a 
= ρ, a 
= µ

∂χ(ρ, µ)

∂a
=

(
1

µ − a
− 1

ρ − µ

)
χ(ρ, µ) + χ(a, µ) χ(ρ, a) ρ 
= µ. (23)

In terms of the function β(ρ, µ) defined as β(ρ, µ, a) = − ρ (µ−a)

µ (ρ−a)
χ(ρ, µ, a) equation (23)

looks like
∂β(ρ, µ)

∂a
= β(a, µ) β(ρ, a). (24)

Equation (23) (or (24)) describes integrable deformations of the CBA function due to the motion
of position a of the pole of ω(λ) (see also [8]). In addition to this analytic meaning, it has
a pure geometric interpretation. Namely, equation (24) together with its cyclic permutations
is nothing but the continuous analogue of the Darboux system ∂βik

∂Xl
= βil βlk which describes

the triply conjugate system of surfaces in R
3 [16]. This old geometric system and its discrete

generalizations have attracted considerably interest recently (see, e.g., [7, 8, 11, 13]). Note
that in our approach the continuous Darboux system (24) arises in a scalar case. In a different
context such a fact has already been mentioned in [15, 17].

The continuous Darboux system (24) possesses all properties of the standard Darboux
system. In particular, the functions Xi and X∗

i defined by the formula (12) represent the
tangent vectors, while the function

φ =
∫ ∫

C/G

dλ ∧ dλ

∫ ∫
C/G

dµ ∧ dµ A(µ) χ(λ, µ) B(λ) (25)

is a position vector. Formula (15) gives an explicit transformation of solution of the continuous
Darboux system (24). It has a form of the standard Darboux–Lévy transformation (see, e.g.,
[18]). The choice ω(λ) = 1

2π i

∑n
k=1

1
λ−ak

in (21) and (22) leads to the system of n separated
continuous Darboux systems.

If now we parametrize the function g in (19) as g(λ) = exp
(∑∞

n=1 tn/λn
)

then we have
infinite set of infinitesimal shifts of variables tn with ωn = gtn g−1 = 1

λn and the corresponding
equations (22) take the form

∂χ(ρ, µ)

∂tn
=

(
1

µn
− 1

ρn

)
χ(ρ, µ) +

1

(n − 1)!

{
∂n−1

∂λn−1
[χ(λ, µ) χ(ρ, λ)]

}
λ=0

n = 1, 2, 3, . . . . (26)

This hierarchy of equations is equivalent to that studied in [15] and hence the hierarchy
(26) describes the generalized Kadomtsev–Petviashvili (KP) hierarchy which include the KP
hierarchy itself, the modified KP hierarchy and the hierarchy of KP singularity manifold
equations.

It is known that the times tn and the pole-type parametrizations of the KP hierarchy are
connected by the Miwa transformation tn = 1

n

∑∞
i=1 an

i [19]. In fact, due to the relation
∂
∂a

= ∑∞
n=1 an−1 ∂

∂tn
, the equivalence of the infinite hierarchy (26) and equation (23) is an easy

check (see also [17]).
The special choice of the function ω(λ) may provide interesting deformations. For

example, let us put ω(λ) = S(λ), where S(λ) is the Schwarz function of the curve ∂G. The
Schwarz function completely characterizes the curve and λ = S(λ) at λ ∈ ∂G [20]. Thus for
boundaries ∂G such that S(λ) is analytic outside G, one has the deformations

∂

∂τ
χ(ρ, µ) = −

∫
∂G

dλ λ χ(λ, µ) χ(ρ, λ) = −
∫

∂G

dλ χ(λ, µ) S(λ) χ(ρ, λ). (27)
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Such deformations are defined by the form of the boundary ∂G of the domain G. If G is the
unit disc D0 then S(λ) = 1

λ
[20] and the deformation (27) is of KP type (26). In the case when

G is a circle of the radius 1 with the centre at λ0, then S(λ) = 1
λ−λ0

+ λ0 and the deformation
(27) (τ = λ0) coincides with (23).

Not only continuous integrable equations but also discrete ones can be easily derived from
the basic bilinear equations (6) and (7). For instance, treating the transformation (16) with
G(λ) = 1

λ−a
as the shift in the discrete variable n, namely, R′(ν, λ; n) = R(ν, λ; n + 1) =

Ta R(ν, λ; n) one readily obtains from (7) the equation

(Ta − 1) ψ(ρ, µ) = Ta ψ(a, µ) · ψ(ρ, a) ρ 
= µ (28)

where

ψ(ρ, µ; n) = (µ − ρ)

(
µ − a

ρ − a

)n

χ(ρ, µ; n) (29)

which is the discrete analogue of the Darboux system (24). A discrete Darboux system has
been derived in [8] and then has been studied intensively over the last few years in the context
of discrete integrable nets (see, e.g., [11]).

The basic bilinear relations (6) and (7) are also useful for studying the constraints of
generic integrable hierarchies. Here we will show how the scalar BKP and CKP hierarchies
[3] arise within this approach. For this purpose it is sufficient to use relations (6) and (7) with
R′(ν, λ) = R(−λ, −ν) and assume that the kernel R satisfies the constraint

R(−λ, −ν) F (λ) = F (ν) R(ν, λ) (30)

where F (λ) is a function obeying the condition F (−λ) = ± F (λ). In this case the domain G

has to be symmetric under the change λ → −λ. Such types of constraints in matrix case have
been discussed recently in [9, 11].

First, we note that a solution of the ∂-problem (1) with the kernel R′(ν, λ) = R(−λ, −ν)

is given by χ ′(ν, λ) = χ(−λ, −ν). Then, the relation (7) with f (λ) = F (λ) and the kernel R

which satisfies (30) takes the form∫
∂G

dλ χ(−µ, −λ) F (λ) χ(ρ, λ) = 0. (31)

As in the generic case, we have the generalized Hirota identity (19) but now the transformations
(16) have to be compatible with the constraint (30). This implies that g−1(λ) = g(−λ). Due
to the constraint (31) the identity (19) (with g−1(λ) = g(−λ)) can be rewritten in an equivalent
form.

First we consider the case F = 1. So, R(−λ, −ν) = R(ν, λ). Then the constraint (31)
implies that χ(−µ, −ρ) = χ(ρ, µ). Hence the generalized Hirota identity (19) looks like
(G = D0) ∫

∂D0

dλ χ(λ, µ; g′ ) g′(λ) g(−λ) χ(−λ, −ρ; g) = 0. (32)

At µ = ρ = 0, and with the parametrization of g by standard KP times (g(λ) =
exp

[∑∞
n=1 t2n−1/λ2n−1

]
), relation (32) coincides with the Hirota bilinear identity for a scalar

CKP hierarchy.
The treatment of the constraint (30) with F = 1

λ
is a little bit more involved. First, the

constraint (31) gives

1

µ
χ(ρ, −µ) +

1

ρ
χ(µ, −ρ) = χ(ρ, 0) χ(µ, 0). (33)
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Then the identity (19) with g(λ) = exp
[∑∞

n=1 t2n−1/λ2n−1
]

and t ′
1 = t1 + ε, ε → 0 implies

∫
∂D0

dλ

[(
∂

∂t1
+

1

λ

)
χ(λ, −µ)

]
· χ(ρ, λ) = 0. (34)

Subtracting equation (31) with F = 1
λ

from (34), one obtains
∫

∂D0

dλ

[(
∂

∂t1
+

1

λ

)
χ(λ, −µ) − 1

λ
χ(µ, −λ)

]
· χ(ρ, λ) = 0. (35)

For µ = 0 the quantity in the bracket in (35) has no singularities in D0. Hence, equation (35)

implies that
(

∂
∂t1

+ 1
ρ

)
χ(ρ, 0) = 1

ρ
χ(0, −ρ) or equivalently

g−1(λ) χ(0, λ) = −λ
∂

∂t1
[g(−λ) χ(−λ, 0)]. (36)

With the use of (36) one rewrites the Hirota identity (19) with µ = ρ = 0 in the form

∂

∂t1

∫
∂D0

dλ λ χ(λ, 0; g′) g′(λ) g(−λ) χ(−λ, 0; g) = 0

and finally as ∫
∂D0

λ dλ

2π i
χ(λ, 0; g′) g′(λ) g(−λ) χ(−λ, 0; g) = −1. (37)

This relation is just the Hirota bilinear identity for the scalar BKP hierarchy (see [3]) written
in terms of wavefunctions with the normalization 1

λ
as λ → 0. In terms of times t2n−1 the

equations of the BKP hierarchy are given by equations (26) with n = 2k − 1, k = 1, 2, 3, . . .

and µ = 0 or ρ = 0. It is a straightforward check that the constraint (33) is compatible with
these equations.

In similar manner one can treat multicomponent KP hierarchies, the Toda lattice hierarchy
and other types of constraints.
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